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ABSTRACT 

A method is derived to make a “least squares fit” to measurements of the components 
of a magnetic field at various points in three dimensions. 

To do so, a polynomial model of the field is designed such that the equations 

V-B=O, VxB=O 

are satisfied. 
This method is obviously equally well applicable to any other field obeying the 

above equations. 

In experiments on high-energy physics one is frequently faced with the problem 
of deducing the complete magnetic field from measurements of its components at 
various points. 

For the type of magnet used in connection with spark chambers, the field is 
to be known in a region which is essentially a rectangular box. Therefore we describe 
the field in Cartesian coordinates. 

For our model of the field components we thus choose three polynomials, each 
in x, y, and z. For the convergence of the series used, it is desirable that the three 
space coordinates of the volume considered are of the same order. Taking terms 
with sum of powers less than or equal to N, we have a total of 
(N + 3)(N + Z)(N + 1)/2 terms, being three times the number of combinations 
of i, j, and k, if i + j + k < N and i, j, and k are integers 3 0. 

Due to the constraints 

V*B=O, VxB=O, 

the actual number of independent coefficients is (N + 2)2 - 1, which is lower 
than the number of terms by a factor (N + 2)/2. This number can also be derived 
from Ref. [l]. 

For V x B = 0 to be satisfied, it is necessary and sufficient that B = Vt,h. 
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Writing’ 

N+2 N-i+3 N-i-j+4 

1 d&j, k) -+lY-k-l, 
k=l 

we can from this derive expansions for each component, e.g., 

N+l N-ii-2 N--id+3 

B, = c c c jd(i, j + 1, Ic) xi--lyj--1zk--l. 
i=l j=l k=l 

From V . B = 0 it follows that A# = 0 or 

i(i + 1) d(i + 2, j, k) + j(j + 1) d(i, j + 2, k) + k(k + 1) d(i, j, k + 2) = 0. 

We now consider this equation as a recurrence relation expressing all d’s in 
terms of those with i = I and i = 2.2 This can be written explicitly as 

d(i’j’k)z zl (i- l)!(j- l)!(k- l)! 

where 

~11 = [(i + 1)/2]; the largest integer <(i + 1)/2 

I=i-201+2 (=I or 2) 

J=j$2iu-2v 

K=kt2v-2. 

Throughout this paper we use [ ] brackets to denote the truncation of decimals. 
The proof of the above expression is readily given by induction; i.e., it is verified 

for i = 1 and i = 2, and then it is shown that if it is true for i = i’ - 2, it follows 
that it is true for i = i’. 

We thus find 

~ = y NY N-F+4 i (_ l)a+l (J _ 1) !  (K _ I) !  CI;) X*-ly5--1Zk-l 

(i - l)! (j - l)! (k - I)! 44 4 K). 
$4 j=l k=l v=l 

1 For the convenience of FORTRAN writers we use indices from 1 upwards, rather than from 0. 
* It would be more elegant to treat i, j, and k in a symmetric or rather cyclic fashion. This 

can indeed be done, but the general expression becomes rather complicated. Doing it either 
way should, however, give the same final results. 
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However, to use this further it is necessary to collect the terms with successive 

independent coefficients d(Z, J, K). This results in 

yma= v’max (_ l)e+l (J - 1) ! (K - 1) ! (;I;) xi-lyj-lZk~ d(l 
(i - l)! (J - I)! (k - l)! 

J K) 
9 , 

I=1 or 2 
3<Z+J+K< N-i-4 

where ci=V+v~--l, i=Zfh--2, 

j = J - 2~ + 2v, k=K-2v+2, 

We have now omitted the term with i = 1, j = 1, k = 1 since 41, 1, 1) gives 
no contribution to the expansions of the field components. 

This result can also be derived from Ref. [3]. 
The three indices can be represented by one which is given by the transformation 

or inversely 

z = 21[(1 - 1’)/2] - (1 - I’) + 2, 

J = i[(Z - 1’ + 1)/2j, 

where 

K = [W] - Z - J + 3, 

1’ = [Ip/2p - 1. 

The I[ 1 brackets are again used to denote the truncation of decimals. 
The maximum value of I is L = (N + 2)2 - 1. However, written in this form 

we may choose for L, the number of independent coefficients, any integer value. 
We now have 

= "mruvmax (.wl)a+l(J- I)! (Km I)! (;z;)xi-lyH,k-1 d(,) 

(i - I)! (j - I)! (k - l)! 

A component of the field at a point (xx,, , ss, , z,,,) is given by 

L ymux y;nax (- l)a+l (J - I)! (K _ I)! (z-3 &ly;l$-l 

B=CCC (i - l)! (j - I)! (k - l)! 
d(l) 

9 
14 v=l v'=1 
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where 

Z, J, K and 01 are as before, but 

i=zf2a-2-86,, 

j= J-2201+2v-8~, 

k= K--v-+2-&, 

K+l-86, J+l-a6, 
Vmax = 

IF II 2 ’ 
v&ax = 

B ll 2 ’ 

where 
6, = 1 for x-component and 0 otherwise, 

6, = 1 for y-component and 0 otherwise, 

6, = 1 for z-component and 0 otherwise. 

This can now be written as 

B = i A,zd(l) 
Z=l 

or in matrix notation 
F = Ad, 

where now F is an array of which an element is a particular component of the 
field at a particular point (zm , y, , z,). 

When F contains A4 observations, the coefficients d are to be chosen so that 

is a minimum; W, cc l/(statistical error of measurement)2 
This problem is well known [2] and the solution can be obtained from 

d = [A’WAI-1 A’WF, 

with W = diagonal matrix with the Wm’s on the diagonal, and A’ is the transpose 
of A. 

The actual FORTRAN program to solve this was written and tested. A listing can 
be obtained from the author. The data to be supplied to the program are: 

(i) M observations; 
(ii) 3 x M coordinates of the points where these observations were taken; 
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(iii) M numbers between 1 and 3 (incl.) indicating the x, y and z component, 
respectively; 

(iv) the desired value of L. 
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